InI₃/Me₃SiI-catalyzed Direct Alkylation of Enol Acetates Using Alkyl Acetates or Alkyl Ethers

Yoshiharu Onishi, Yoshihiro Nishimoto, Makoto Yasuda, and Akio Baba* Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

(Received August 4, 2011; CL-110654; E-mail: baba@chem.eng.osaka-u.ac.jp)

A combined Lewis acid of InI_3 and Me_3SiI was used to catalyze the direct coupling reactions of enol acetates with alkyl acetates or alkyl ethers without generating metal waste. The easily-handled alkylating reagents enlarged the application area of this coupling reaction.

The α -alkylation of carbonyl compounds is one of the most fundamental carbon-carbon bond-forming reactions in organic synthesis. In particular, the coupling reaction between alkyl electrophiles and metal enolates is a useful protocol,^{1–4} but metal enolates often lead to problems with handling, poor chemoselectivity, and the generation of metal wastes. Therefore, we focused on the displacement of metal enolates to enol acetates, which are helpful metal-free enol derivatives in terms of availability, easy handling, and stability.⁵ We recently developed the direct coupling between enol acetates and either alcohols or silvl ethers.5e,5g However, these couplings have some disadvantages, as alcohols often cause alcoholysis of substrates, and silyl ethers bring silyl compounds as a side product. Therefore, we wish to report the direct coupling of enol acetates with either alkyl acetates or alkyl ethers, which were activated by a combined Lewis acid of InI3 and Me3SiI.6

The effects of Lewis acid catalysts were evaluated in the reaction of secondary benzylic acetate **1a** with enol acetate **2a** (Table 1). The use of InI₃, which is based on our previous work, gave the desired α -alkylated ketone **3** in unsatisfying yield of 54% (Entry 1).^{5e,5g} However, the addition of Me₃SiI increased the yield to a quantitative value (Entry 2). No catalytic attribute of Me₃SiI indicated a high plausibility for the cooperation of InI₃ with Me₃SiI (Entry 3).⁷ Although the reaction between Me₃SiI and ester moieties had been expected,⁸ the combination catalyst selectively promoted the desired coupling. Combinations using either InCl₃ or InBr₃ were inferior to that using InI₃ (Entries 4 and 5). Representative Lewis acids such as Sc(OTf)₃, ZnCl₂, BF₃•OEt₂, and AlCl₃ provided unsatisfying results even in the presence of Me₃SiI (Entries 6–9).

With the optimized conditions in hand, we investigated the scope and limitations of alkyl acetates 1 and enol acetates 2 (Table 2). Enol acetate 2b derived from acetophenone gave the α -alkylated aromatic ketone 4 quantitatively (Entry 1). The reactions using aliphatic enol acetates 2c and 2d furnished the corresponding products effectively (Entries 2 and 3). Unsymmetrical ketone-derived 2e was applicable without isomerization (Entry 4). Sterically hindered 2f also provided the desired product 8 and led to the constitution of a quaternary carbon center at the α -position of the carbonyl group (Entry 5). Unexpectedly, in the reaction using aldehyde-derived enol acetate 2g, geminal diacetate 9 was obtained instead of the α -alkylated aldehyde product (Entry 6). This result indicates that

Table 1. Screening of catalysts ^a							
		Catalyst (5 mol%)					
	OAc	Additive (10 mol%)	O				
Р		CH ₂ Cl ₂ rt 2 h					
	1a 2a		3				
Entry	Catalyst	Additive	Yield/% ^b				
1	InI ₃		54				
2	InI_3	Me ₃ SiI	quant.				
3	—	Me ₃ SiI	0				
4	InCl ₃	Me ₃ SiI	72				
5	InBr ₃	Me ₃ SiI	87				
6	Sc(OTf) ₃	Me ₃ SiI	27				
7	$ZnCl_2$	Me ₃ SiI	0				
8	$BF_3 \cdot OEt_2$	Me ₃ SiI	0				
9	AlCl ₃	Me ₃ SiI	0				

^aReaction conditions: alkyl acetate **1a** (1 mmol), enol acetate **2a** (2 mmol), Lewis acid (0.05 mmol), Me₃SiI (0.1 mmol), CH₂Cl₂ (2 mL), rt, 2 h. ^bYields were determined by ¹H NMR analysis using an internal standard for crude products.

the α -alkylated aldehyde reacted with acetic anhydride which was generated as a side product.^{9,10} Although primary benzylic acetate **1b** did not produce the desired α -alkylated ketone, allylic and propargylic acetates effectively gave the corresponding products **11** and **12**, respectively (Entries 7–9).

To our delight, we found that alkyl ethers instead of alkyl acetates were also applicable in the reaction conditions using the InI₃/Me₃SiI combined system, and the results are summarized in Table 3. Secondary benzylic and benzhydryl methyl ethers provided the corresponding α -alkylated ketones 3 and 14 in 89 and 98% yields, respectively (Entries 1 and 2). Gratifyingly, benzyl methyl ether (13c) furnished 10 in 41% yield despite the inertness of benzyl acetate (1b), as shown in Entry 7, Table 2 (Entry 3). Although the reason for this result cannot yet be explained, alkyl methyl ethers could be used in a supplemental fashion. The reactions using methyl ethers 13d proceeded to give desired products effectively (Entry 4). Unfortunately, tert-butyl methyl ether and diisopropyl ether did not provide the corresponding α -alkylated ketones at all, but 1-methoxyadamantane (13e) furnished 15 quantitatively (Entry 5). Not only methyl ether but *n*-butyl ether **13f** produced the desired ketone quantitatively (Entry 6). These results, as shown in Table 3, are noteworthy because there have been few reports on the α -alkylation of carbonyl compounds by the direct use of alkyl ethers as an alkyl electrophile.³ In addition, the generation of alkyl acetate as a side product is an advantage of this system in terms of preventing side reactions.

Figure 1 shows a plausible mechanism. First, InI_3 and Me_3SiI form a combined Lewis acid **16**, and the silicon center of

	R-OAc + R ¹	R^{2}	Me C	$R_3(3 \text{ Into } 76) \rightarrow R_3(3 \text{ Into } 76) $	0 R ² 4-12	
OAc 2a	$\begin{array}{c} OAc \\ OAc \\ Ph \end{array} (E/Z = 62 \\ 2b \\ 2c \end{array}$	Ac 9:31)	OAc	OAc C ₅ H ₁₁ (<i>E/Z</i> = 67:33) 2e	OAc 2f	OAc
Entry	Alkyl acetate	1	2	Product		Yield / % ^b
1	PhOAc	1a	2b	Ph	4	quant. (58)
2		1a	2c	Ph	5	quant. (68) ^c
3		1a	2d	Ph	6	77 (59) ^d
4		1a	2e	Ph C ₅ H ₁₁	7	98 (60) ^e
$5^{\rm f}$		1a	2f	Ph	8	51 (36)
6 ^g		1a	2g	Ph OAc OAc	9	53 (45)
$7^{\rm f}$	Ph OAc	1b	2a	Ph	10	0
$8^{\rm h}$	OAc	1c	2a	O O	11	74 (45)
9 ⁱ	Ph	c 1d	2a	Ph O Ph	12	67 (48)

Table 2. Reactions of alkyl acetate 1 with various enol acetates 2^{a}

Inl (E mole)

^aReaction conditions: alkyl acetate **1** (1 mmol), enol acetate **2** (2 mmol), InI₃ (0.05 mmol), Me₃SiI (0.1 mmol), CH₂Cl₂ (2 mL), rt, 2 h. ^bYields were determined by ¹H NMR analysis using an internal standard for crude products. Values in parentheses are isolated yields. ^cdr 64:36. ^ddr 59:41. ^edr 55:45. ^fClCH₂CH₂Cl (2 mL), 83 °C, 2 h. ^g2g (5 mmol), ClCH₂CH₂Cl (2 mL), 83 °C, 2 h. ⁱMeCN (2 mL), rt, 2 h.

16 interacts with the leaving group (OR') of 17, as illustrated. Then, cationic species 18 is generated along with the elimination of Me₃SiOR' 19. Enol acetate 2 reacts with 18 to produce α -alkylated carbonyl compound 20. Finally, acyl cationic species 21 reacts with 19 to regenerate the combined Lewis acid InI₃/Me₃SiI with the formation of a metal-free side product 22.¹¹

In conclusion, the direct coupling between enol acetates and alkyl electrophiles, such as alkyl acetates and alkyl ethers, was catalyzed via the combination catalyst InI_3/Me_3SiI . This reaction system is environmentally benign, as it produces no metal waste.

Table 3. Reactions of various alkyl ethers 13 with enol acetate $2a^{\rm a}$

	R-OMe + 13	OAc Me	nl ₃ (5 mol%) e ₃ Sil (10 mol%) CH ₂ Cl ₂ , rt, 2 h R _	o	
Entry	Alkyl ether	13	Product		Yield /% ^b
1	PhOMe	1 3 a	Ph	3	89 (68)
2	Ph Ph OMe	13b	Ph O Ph	14	98 (84)
3 ^c	Ph ^{OMe}	13c	Ph	10	41 (35)
4 ^d	ОМе	13d	o	11	58 (40)
5 ^c	OMe	13e	A C	15	quant. (74)
6	Ph Ph O <i>n-</i> Bu	13f	Ph O Ph	14	quant. (90)

^aReaction conditions: alkyl ether **13** (1 mmol), enol acetate **2a** (2 mmol), InI₃ (0.05 mmol), Me₃SiI (0.1 mmol), CH₂Cl₂ (2 mL), rt, 2 h. ^bYields were determined by ¹H NMR analysis using an internal standard for crude products. Values in the parenthesis are isolated yields. ^cClCH₂CH₂Cl (2 mL), 83 °C, 2 h. ^d0 °C, 2 h.

Figure 1. Reaction mechanism.

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22106527, "Organic Synthesis Based on Reaction Integration. Development of New Methods and Creation of New Substances" and No. 23105525, "Molecular Activation Directed toward Straightforward Synthesis") and Challenging Exploratory Research (No. 23655083) from the Ministry of Education, Culture, Sports, Science and Technology (Japan). Y.O. thanks the Global COE Program of Osaka University.

References and Notes

- For a review, see: a) M. T. Reetz, W. F. Maier, I. Chatziiosifidis, A. Giannis, H. Heimbach, U. Löwe, *Chem. Ber.* **1980**, *113*, 3741. b) D. Caine, in *Comprehensive Organic Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Chemistry*, ed. by B. M. Trost, I. Fleming, Elsevier, Oxford, UK, **1991**, Vol. 3, Chap. 1.1, pp. 1–63. doi:10.1016/B978-0-08-052349-1.00058-5. c) M. T. Reetz, *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 96.
- 2 Selected works on Lewis acid catalyzed α-alkylation of carbonyl compounds by the direct use of alkyl acetates as alkylating reagents, see: a) T. J. Barbarich, S. T. Handy, S. M. Miller, O. P. Anderson, P. A. Grieco, S. H. Strauss, Organometallics 1996, 15, 3776. b) P. A. Grieco, W. J. DuBay, L. J. Todd, Tetrahedron Lett. 1996, 37, 8707. c) P. A. Grieco, S. T. Handy, Tetrahedron Lett. 1997, 38, 2645. d) Z.-p. Zhan, X.-b. Cai, S.-p. Wang, J.-l. Yu, H.-j. Liu, Y.-y. Cui, J. Org. Chem. 2007, 72, 9838. e) P. Rubenbauer, T. Bach, Tetrahedron Lett. 2008, 49, 1305. f) M. Lin, L. Hao, R.-d. Ma, Z.-p. Zhan, Synlett 2010, 2345.
- 3 a) T. Mukaiyama, H. Nagaoka, M. Ohshima, M. Murakami, *Chem. Lett.* 1986, 1009. b) T. Mukaiyama, S. Matsui, K. Homma, S. Kobayashi, *Bull. Chem. Soc. Jpn.* 1990, 63, 2687. c) T. Soga, H. Takenoshita, M. Yamada, T. Mukaiyama, *Bull. Chem. Soc. Jpn.* 1990, 63, 3122. d) Y. Nishimoto, T. Saito, M. Yasuda, A. Baba, *Tetrahedron* 2009, 65, 5462.
- 4 Selected works on Tsuji–Trost-type α-alkylation of carbonyl compounds, see: a) T. Muraoka, I. Matsuda, K. Itoh, *Tetrahedron Lett.* 2000, 41, 8807. b) M. Braun, F. Laicher, T. Meier, Angew. Chem., Int. Ed. 2000, 39, 3494. c) P. A. Evans, D. K. Leahy, J. Am. Chem. Soc. 2003, 125, 8974. d) P. A. Evans, M. J. Lawler, J. Am. Chem. Soc. 2004, 126, 8642. e) D. C. Behenna, B. M. Stoltz, J. Am. Chem. Soc. 2004, 126, 15044. f) E. C. Burger, J. A. Tunge, Org. Lett. 2004, 6, 4113. g) X.-X. Yan, C.-G. Liang, Y. Zhang, W.

Hong, B.-X. Cao, L.-X. Dai, X.-L. Hou, Angew. Chem., Int. Ed. 2005, 44, 6544. h) B. M. Trost, J. Xu, J. Am. Chem. Soc. 2005, 127, 17180. i) T. Graening, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 17192. j) M. Braun, T. Meier, Angew. Chem., Int. Ed. 2006, 45, 6952. k) W.-H. Zheng, B.-H. Zheng, Y. Zhang, X.-L. Hou, J. Am. Chem. Soc. 2007, 129, 7718. l) J.-P. Chen, C.-H. Ding, W. Liu, X.-L. Hou, L.-X. Dai, J. Am. Chem. Soc. 2010, 132, 15493. m) D. Li, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2011, 133, 5672.

- 5 There are several reports that enol acetates are used as an enol nucleophile directly, see: a) T. Mukaiyama, T. Izawa, K. Saigo, *Chem. Lett.* 1974, 323. b) Y. Masuyama, Y. Kobayashi, R. Yanagi, Y. Kurusu, *Chem. Lett.* 1992, 2039.
 c) M. Yanagisawa, T. Shimamura, D. Iida, J.-i. Matsuo, T. Mukaiyama, *Chem. Pharm. Bull.* 2000, 48, 1838. d) C.-X. Song, G.-X. Cai, T. R. Farrell, Z.-P. Jiang, H. Li, L.-B. Gan, Z.-J. Shi, *Chem. Commun.* 2009, 6002. e) Y. Nishimoto, Y. Onishi, M. Yasuda, A. Baba, *Angew. Chem., Int. Ed.* 2009, 48, 9131. f) L. Liu, P. E. Floreancig, *Angew. Chem., Int. Ed.* 2010, 49, 3069. g) Y. Onishi, Y. Nishimoto, M. Yasuda, A. Baba, *Org. Lett.* 2011, 13, 2762.
- 6 a) Y. Onishi, T. Ito, M. Yasuda, A. Baba, *Eur. J. Org. Chem.*2002, 1578. b) T. Saito, M. Yasuda, A. Baba, *Synlett* 2005, 1737. c) T. Saito, Y. Nishimoto, M. Yasuda, A. Baba, *J. Org. Chem.* 2006, *71*, 8516.
- 7 Other combinations of indium halides and trimethylsilyl halides were investigated; see Supporting Information.¹²
- 8 For a review on synthetic applications of Me₃SiI, see: G. A. Olah, S. C. Narang, *Tetrahedron* **1982**, *38*, 2225.
- 9 P. G. M. Wuts, T. W. Greene, in *Greene's Protective Groups* in Organic Synthesis, 4th ed., WILEY, New York, 2007, Chap. 4, pp. 446–447.
- Selected papers, see: a) K. S. Kochhar, B. S. Bal, R. P. Deshpande, S. N. Rajadhyaksha, H. W. Pinnick, *J. Org. Chem.* **1983**, *48*, 1765. b) V. K. Aggarwal, S. Fonquerna, G. P. Vennall, *Synlett* **1998**, 849. c) L. Yin, Z.-H. Zhang, Y.-M. Wang, M.-L. Pang, *Synlett* **2004**, 1727.
- 11 Acetic anhydride and methyl acetate were observed in situ by ¹H and ¹³C NMR.
- 12 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.